Characterization of the Drosophila BEAF-32A and BEAF-32B Insulator Proteins

نویسندگان

  • S V Satya Prakash Avva
  • Craig M Hart
چکیده

Data implicate the Drosophila 32 kDa Boundary Element-Associated Factors BEAF-32A and BEAF-32B in both chromatin domain insulator element function and promoter function. They might also function as an epigenetic memory by remaining bound to mitotic chromosomes. Both proteins are made from the same gene. They differ in their N-terminal 80 amino acids, which contain single DNA-binding BED fingers. The remaining 200 amino acids are identical in the two proteins. The structure and function of the middle region of 120 amino acids is unknown, while the C-terminal region of 80 amino acids has a putative leucine zipper and a BESS domain and mediates BEAF-BEAF interactions. Here we report a further characterization of BEAF. We show that the BESS domain alone is sufficient to mediate BEAF-BEAF interactions, although the presence of the putative leucine zipper on at least one protein strengthens the interactions. BEAF-32B is sufficient to rescue a null BEAF mutation in flies. Using mutant BEAF-32B rescue transgenes, we show that the middle region and the BESS domain are essential. In contrast, the last 40 amino acids of the middle region, which is poorly conserved among Drosophila species, is dispensable. Deleting the putative leucine zipper results in a hypomorphic mutant BEAF-32B protein. Finally, we document the dynamics of BEAF-32A-EGFP and BEAF-32B-mRFP during mitosis in embryos. A subpopulation of both proteins appears to remain on mitotic chromosomes and also on the mitotic spindle, while much of the fluorescence is dispersed during mitosis. Differences in the dynamics of the two proteins are observed in syncytial embryos, and both proteins show differences between syncytial and later embryos. This characterization of BEAF lays a foundation for future studies into molecular mechanisms of BEAF function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of BEAF mutations isolated by homologous recombination in Drosophila.

The Drosophila BEAF-32A and BEAF-32B proteins bind to the scs' insulator and to hundreds of other sites on Drosophila chromosomes. These two proteins are encoded by the same gene. We used ends-in homologous recombination to generate the null BEAF(AB-KO) allele and also isolated the BEAF(A-KO) allele that eliminates production of only the BEAF-32A protein. We find that the BEAF proteins together...

متن کامل

The scs' boundary element: characterization of boundary element-associated factors.

Boundary elements are thought to define the peripheries of chromatin domains and to restrict enhancer-promoter interactions to their target genes within their domains. We previously characterized a cDNA encoding the BEAF-32A protein (32A), which binds with high affinity to the scs' boundary element from the Drosophila melanogaster 87A7 hsp70 locus. Here, we report a second protein, BEAF-32B, th...

متن کامل

The scs9 Boundary Element: Characterization of Boundary Element-Associated Factors

Boundary elements are thought to define the peripheries of chromatin domains and to restrict enhancerpromoter interactions to their target genes within their domains. We previously characterized a cDNA encoding the BEAF-32A protein (32A), which binds with high affinity to the scs* boundary element from the Drosophila melanogaster 87A7 hsp70 locus. Here, we report a second protein, BEAF-32B, tha...

متن کامل

The Drosophila boundary element-associated factors BEAF-32A and BEAF-32B affect chromatin structure.

Binding sites for the Drosophila boundary element-associated factors BEAF-32A and -32B are required for the insulator activity of the scs' insulator. BEAF binds to hundreds of sites on polytene chromosomes, indicating that BEAF-utilizing insulators are an important class in Drosophila. To gain insight into the role of BEAF in flies, we designed a transgene encoding a dominant-negative form of B...

متن کامل

Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster links BEAF to transcription.

Insulator elements play a role in gene regulation that is potentially linked to nuclear organization. Boundary element-associated factors (BEAFs) 32A and 32B associate with hundreds of sites on Drosophila polytene chromosomes. We hybridized DNA isolated by chromatin immunoprecipitation to genome tiling microarrays to construct a genome-wide map of BEAF binding locations. A distinct difference i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016